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Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

YOUD J. Kim*
School of Mechanical Engineering, Sungkyunkwan University

The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a

wedge have been examined with constant surface temperature. The similarity variables found by

Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear

boundary layer equations. The numerical solutions are presented using the fourth-order Runge

-Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and

temperature across the boundary layer are plotted. These results are also compared with the

corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant

wedge angle, the skin friction coefficient is lower for micro polar fluid, as compared to

Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of

velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also

show that for a constant wedge angle with a given Prandtl number, Pr=l, the effect of

increasing values of K results in increasing thermal boundary layer thickness for anisotropic

fluid, as compared with Newtonian fluid. For the case of the constant material parameter K,
however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.
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Nomenclature -------------

C, : Local skin friction coefficient

f : Reduced stream function

h : Dimensionless microrotation

hi : Heat transfer coefficient

J : Micro-inertia density
K : Dimensionless parameter of vortex viscos-

ity

m : Falkner-Skan power-law parameter

Re : Reynolds number

T : Temperature

u, v : Fluid velocities in the x and y directions.

respectively

U : Free stream velocity

x : Streamwise coordinate along the body

surface

y : Coordinate normal to the body surface
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Greek symbols

a : Thermal diffusivity

13 : Wedge angle parameter

I : Spin gradient viscosity

TJ : Pseudo-similarity variable

x : Vortex viscosity

f.L : Absolute viscosity of the fluid

1/ : Kinematic viscosity

p : Density of micropolar fluid

t : Shear stress

to : Angular velocity of micropolar fluid

~ : Coefficient of viscosity

</J : Stream function

S : Coefficient of viscosity

e : Dimensionless temperature

1. Introduction

At present there exist several approaches to the

formulation of t1uids that contain structures, and

these fluids are called by various names such as 

simple rnicrofluids, micropolar t1uids, deformable

directed fluids, polar fluids, anisotropic fluids,
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etc.

The theory of micropolar fluids which display

the microscopic effects arising from the local

structure and micro-motions of the fluid ele

ments, was formulated by Eringen (1966, 1972).

This is a recent development in continuum

mechanics, and has attracted the attention of

several investigators (Bergholz, 1980; Emra and

Kulacki, 1980; Chandra Shekar et al., 1984)

because of their industrial applications. Experi

ments with fluids containing extremely small

amount of polymeric additives indicate that the

skin friction near a rigid body in such fluids are

considered lower (up to 30-35%) than the same

fluids without additives. The classical Navier

Stokes theory is incapable of predicting these

findings since it contains no mechanism to

explain this new physical phenomenon.

Physically, the mathematical model underlying

the anisotropic fluids may represent the behavior

of polymeric additives, blood, lubricants, liquid

crystals, dirty oils and colloidal suspension solu

tions. The theory of such fluids has been attracted

considerable attention. For example, with the aid

of Karman-Polhausen integral method, Willson

(1970) obtained the approximate solution of

boundary layer micropolar fluids flow over a

semi-infinite flat plate. Ahmadi (1976) has pro

vided a similarity solution for the micropolar

boundary layer flow over a semi-infinite flat

plate. Ariman (1971) applied the micropolar

fluid theory to the analysis of blood flow for

small arteries of the order of 100,um diameter. He

compared the velocity profiles with the existing

experimental data under the assumption of zero

micro-rotation at the walls and showed a good

agreement.

Rees and Bassom (1996) have studied the

micropolar analogue of the Blasius boundary

layer flow. They derived non-similar boundary

layer equations and solved using the Keller-box

method. They also performed an asymptotic anal

ysis for large distances from the leading edge

because the numerical results indicatd that the

boundary layer developed as a two-layer struc

ture.

Gorla (1980) applied the micropolar boundary

layer theory to the problem of two-dimensional

steady stagnation point flow with constant wall

temperature. He mentioned that the numerical

results could use for drag reduction purposes or

heat transfer rate augmentation in heat exchan

gers. Gorla (1984, 1985) also investigated the

boundary layer characteristics of an axisym

metric, laminar, micropolar fluid flow with a

uniform velocity U along a horizontal cylinder.

He presented the numerical solutions for the

velocity, micro-rotation and heat transfer fields

for a wide range of values of the dimensionless

curvature parameter as well as material parame

ters.

The purpose of this paper is to introduce a

general transformation procedure appropriate to

the problem of boundary layer flow of an

anisotropic fluid in the vicinity of a wedge. It is

necessary to consider in detail the distribution of

velocity and temperature distributions across the

boundary layer, in addition to the surface skin

friction. The problem under study is modelled as

a boundary value problem by introducing a simi

larity transformation and numerical solutions are

presented.

2. Mathematical Formulation

Eringen (1966) derived the following con

stitutive equations for anisotropic fluids that

giving the viscous stress rij, and the couple stress

tensor m., in Cartesian tensor notation, as fol

lows:

rij= (- P+;\vr.r) Oij+ ,u(Vi,j+ Vi,,)

+X(Vj,i-Cij,{Or) (I)

mij= SWr.rOij+ ~Wi,j+ YWj,i (2)

where P is the pressure, Oij is the Kronecker

symbol, ec- is an alternating tensor and the
summation convention has been used. Further

more, Vi,j is the velocity gradient tensor, Wr the

micro-rotation velocity vector, ,u the coefficient

of viscosity, x the coefficient of gyro-viscosity (or

vortex viscosity) and ;\, ~ and S are material

constants.
Consider a two-dimensional steady flow of

laminar, incompressible, anisotropic f1uid flow in
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U(x)
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(8)

The above governing equations need to be
solved subject to the following boundary condi
tions on velocity, micro-rotation and temperature
fields:

Fig. 1 The physical model and coordinate system

the vicinity of a wedge with constant wall temper
ature. The physical model and geometrical coor
dinates are shown in Fig. 1. Let u, v be the
velocities along and perpendicular to the body
surface, all being functions of x and y. The effects
of viscous dissipation will be assumed to be
negligible. Under the usual boundary layer
approximation, the governing conservation equa
tions for the steady, laminar, incompressible,
anisotropic fluid flow in the vicinity of a wedge
can be casted into the nondimensional form with
the absence of body forces and body couples, as
follows (Ahmadi, 1976):

u=o, v=O, w=-+ ~~, T----> T; on y=O

(9)
u ----> U, v ----> 0, to ----> 0, T ----> T~ as y ----> 00

(10)

where U the free stream velocity. The boundary
condition (9) represents weak concentrations and
means that the micro-rotation is equal to a half of
the fluid vorticity at the boundary.

The most famous family of boundary-layer
similarity solutions was formulated by Falkner
and Skan (1930). They found that similarity was
achieved by the variable 7J = yg (x), which was
consistent with a power-law free stream velocity
distribution:

where P is the density, j the micro-inertia density,
T the fluid temperature, a the thermal diffusivity,
and to the component of micro-rotation vector
normal to the xy-plane.

Furthermore, the spin-gradient viscosity r
which gives some relationship between the coeffi
cients of viscosity and micro-inertia, is defined as

( 12)

mass:

ou +k=o
ox oy

momentum:

p(u ou +v ou)
ox oy

_ op 02U oW
--a:x+ (f-l+x) Oy2 +Xay

angular momentum:

.( ow ow
Pl ua:x+Vay)

o ( ow ou=ay ray) - x (2w+ oy )

micro-inertia:
o· O·

u..!!L+ v- J =0
ox oy

energy:

sr sr o2T
u ox + v oy = a--ay:-

(3)

(4)

(5)

(6)

(7)

(11)

where the exponent m be termed the Falkner
Skan power-law parameter, and is related to the
wedge angle {J;r by

2m
{J= I+m

When {J is positive, the free-stream velocity
increases along the wedge surface; for negative {J,

it decreases.
In this study we adopted their techniques, and

introduced the following transformations:

_ [ 2vx JI12 I
y- (m+ I) U'ix) 7J= g(x) 7J,

rfJ=[2vx U(x) Jl/2/( )
(m+ 1) 7J

w=U(x)[ (m+I) U(X) J1/2h ( )
2vx 7J '

2vx .
1 (m+ I) U(X) i,

r=[f-l+ n(m/ttU(x) t,

u= Utxi t',

v=-[ vU(x) JI12{( + 1)/
2(m+ I)x m

+ 7J(m-I)f'},
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With the aid of the above transformations, the

boundary layer Eqs, (4) - (7) can be written as

where a prime represents differentiation with

respect to 7J. The continuity equation is automati

cally satisfied by a stream function <f; such that:

(26)

(25)

variable.

The expression for the shear and couple stresses

within the limits of boundary layer theory and in

terms of similarity variables are

(14)

( 13)(j

The boundary conditions (9) and (10) can be

rewritten as

where K denotes the dimensionless viscosity

ratio, defined as follows:

where I is a dimensionless constant.

If the viscosity ratio K is not zero, but I is

taken to be zero, from Eq. (16) we find

_ k(j' (0) j m + I 1.-;p:e;
2 x x

(30)

(31)Nux=hf =-(j'(O)jmi
l ;p:e;

where Rex is the local Reynolds number defined

in the usual way.

In addition, the local heat flux may be written

by Fourier's law as

c = 2rw =[I+1.-K]J2(m+
1) 1"(0)

f pU2 2 ;p:e;
(28)

3. Results and Discussion

The shear stress at the body surface is given by

rw=[fl.+ n~~ Iy=o

=fl.[l ++K] U(x)g(x)r(O) (27)

The local heat transfer coefficient and Nusselt

number are given by

Therefore, the local skin friction coefficient can

be written as follows:

(19)

(22)
2(l-m)

i=If l+m

K=l!fl.

(I +K)r+ Kh'+fr+~[I-(/')2J =0
m+1

( IS)

[I + f] (ih')'- K(2h+1")=i[[ 3:::;/ ]f'h

-fh,-r~]7Jf'h'J (16),m+1

2(m-/) f'i+fi'=O (17)
m+

(j"+fPr(j'=O (18)

f=f'=O, h=- iI", (j=1 on 7J=0 (20)

f'->I,h->O,(j->O aS7J->oo (21)

As aforementioned, the gyration is taken to be

equal to the angular velocity at the body surface.

The solution of micro-inertia density (17) satisfy

ing (20) is

This equation can be reduced to the Blasius

equation with a simple changes of dependent

that is, gyration is identical to the angular veloc

ity. Then Eq. (15) becomes

[1+ f]r'+fr+ ~~l [1-(/')2J=0 (24)

h=-+r (23) The nonlinear governing differential Eqs. (15),

(16) and (18) subject to boundary conditions

(20) - (21) are solved numerically using the fourth

-order Runge-Kutta numerical procedure for

several values of K and m, when I = I.

In this study the boundary condition at 7J -> 00

is replaced by identical ones at 7Jmax which is a

sufficiently large value of 7J where the velocity
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profile f' has approached the free stream velocity

to high accuracy. A spanwise step size L17J of O.

001 is used with 7Jmax=8. In order to verify the
accuracy of the present computer simulation

model, the results are compared with the accepted
data sets for Newtonian fluids over a wedge and

the micropolar boundary layer flow over a semi

infinite plate corresponding to the case computed
by Ahmadi (1976) , and showed a good agree

ment.
In Figs. 2-8 we have shown some graphs of

the characteristic of flow and temperature fields
of anisotropic fluids as a functio n of 7J. Further

more, the values, r (0) , cfJRe;, - h (0) and
Nusselt number with K and m as parameters
have been tabulated in Table I. The numerical

values ind icate that increasing value of the mate
rial parameter K results in a decrease in the

Table 1 The effect of variation of K and m on the
velocity, skin friction coefficient, gyration

field and Nusselt number at the surface for

Pr=1

values of r (0) and - h (0) . This is because as K
increases, the velocity and angular velocity

become larger and thus give rise to a reduction in
the skin friction and wall couple stress.

The variation of dimensionless velocity f' with
7J is shown in Fig . 2 for var ious wedge angles and

material parameters. It is difficult to show clearly
the corresponding streamwise velocity profiles

due to very little variation. The numerical results
show that the magn itude of velocity is smaller for
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Fig. 2 Distribution of velocity profile f' with TJ for
various K and m with I = I
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(3 K r (0) cf.;Re; -h(O) Nu

0.00 0.4696 0.3321 0.2348 0.3321

0.01 0.4679 0.3325 0.2340 0.3309

O· 0.02 0.4661 0.3329 0.2331 0.3296

(m = O.O) 0.03 0.4639 0.3329 0.2320 0.3280

0.04 0.4602 0.3319 0.2301 0.3254

0.05 0.4519 0.3275 0.2259 0.3195

0.00 0.7319 0.5533 0.3660 0.5533

0.03 0.7209 0.5531 0.3605 0.5450

45· 0.05 0.7110 0.5509 0.3555 0.5375

(m= 1/7) 0.08 0.6866 0.5398 0.3433 0.5190

0.10 0.6523 0.5177 0.326 1 0.4931

0.00 0.9277 0.7574 0.4638 0.7574

0.05 0.9040 0.7565 0.4520 0.7381

90° 0.10 0.8790 0.7536 0.4395 0.7177

(m = I/3) 0.15 0.8525 0.7483 0.4263 0.6961

0.20 0.8238 0.7399 0.4119 0.6727

0.00 1.0904 0.9753 0.5452 0.9753

0.05 1.0607 0.9724 0.5303 0.9487

135· 0.10 1.0314 0.9686 0.5157 0.9225

(m = 3/ 5) 0.15 1.0024 0.9638 0.5012 0.8966

0.20 0.9737 0.9580 0.4868 0.8708
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anisotropic fluid with a fixed wedge angle, as
compared to Newtonian fluid (K=O) when the
Falkner-Skan parameter m is constant. For the
case of a constant viscosity parameter K , how
ever, where it is seen that for accelerating flows
tm , (3 >0), the velocity boundary layer is thinner
than for a flat plate at zero incidence.

Figure 3 shows the distribution of gyration

field h with TJ for various values of K and m with
I = I. It is observed that the absolute values of
gyration for small wedge angles (less than 900

)

first increase to a maximum and then decays to
zero. The curves show that the peak value of
gyration vector increases rapidly as K increases.
Furthermore, the gyration boundary layer thick
ness is several times . greater than that of the
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while the Falkner-Skan parameter of the problem
is held constant.

The couple stress, myz/[fJ.U(x)I], distribu
tions across the boundary layer are shown in Fig.
5 for various values of K and m with 1=1. For
the case of a flat plate at zero incidence (m = 0) ,
the couple stress is zero at the wedge surface. And
it becomes slightly negative and then increases
and reaches a constant value for each value of K
at the edge of the boundary layer, as described in
Ahmadi (1976). However, for the case of wedge
angle 120°, the couple stresses tend to decrease
and then reach a constant value as the distance r;

from the surface increases. This is because as K
increases, the velocity and angular velocity
become larger and thus give rise to a reduction in
the skin friction and wall couple stress.

Figure 6 shows the distribution of dimension
less temperature profiles for Newtonian fluid (K

=0) with'Pr = I for various wedge angles. The
numerical results show that the effect of increas
ing values of wedge angle, (3, results in a decreas
ing thermal boundary layer thickness and more
uniform temperature distribution across the
boundary layer.

Figure 7 displays the effects of a dimensionless
material parameter K on the dimensionless tem
perature profiles for various wedge angles with
Pr = 1. These trends show that the thickness of
thermal boundary layer is increased with the
material parameter K. It is also observed that as
(3 increases for fixed values of Pr and K, the
surface heat transfer rate increases due to enhan
cement of flow velocities.
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velocity boundary layer, and it also increases with
K. However, there is a growing tendency on the
absolute values of gyration for the case of m=O.

5, which denotes the wedge angle 120°.
Figure 4 shows the variation of shear stress,

rxy/[ fl.Ux(x)~l across the boundary layer

for different values of K and m. Slight variation
of shear stress distribution with K is observed.
The results show that the shear stress distribution
is lower in the case of the anisotropic fluid case
when compared with the Newtonian fluid case
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"l .20 -f-,~....~~,......~....~......,~
o

'I~
~
>< 1....

+

0.00

"l,08

-c.i z

"l.16

i;
II
'1
II
'11
' 1 K>o,O
I I

\ 1
• \ KoOOS
I. ' / __ '- - - - - - - -

\

" ...(.,,-~.~ . -'_.-.-

8

6

Fig. 6 Effects of wedge angles on the dimensionless
temperature profiles for Newtonian fluid (K

=0) with Pr= I
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Fig. 8 Nusselt number, Nu x / /Rex ' variations for
various wedge angles with Pr= 1

Ahmadi, G., 1976, "Self-Similar Solution of

Incompressible Micropolar Boundary Layer

Flow over a Semi-Infinite Plate," Int. J. Engng

4. Concluding Remarks

References

We have used the theory of micropolar fluids

due to Eringen to formulate a set of ordinary

differential governing equations for a steady, in

compressible, anisotropic fluid in the vicinity of a

wedge whose surface is maintained at a constant

temperature. The numerical results are presented

to illustrate the details of the flow and heat trans

fer characteristics and their dependence on the

material properties of the anisotropic fluid.

It has been shown that the velocity profile

changes slightly in the range of the values studied

but the gyration and couple stress vary appre

ciably with small changes in parameters. In addi

tion, the numerical results indicate that, keeping

m constant, the skin friction coefficient is lower

for anisotropic fluid, as compared with

Newtonian fluid.

It has been also observed that for a constant

wedge angle with a given Prandtl number, Pr=
I, the effect of increasing values of K results in an

increasing thermal boundary layer thickness for

anisotropic fluid, as compared with Newtonian

fluid. For the case of the constant material param

eter K, however, the heat transfer rate for

anisotropic fluid is lower than that of Newtonian

fluid. The accuracy of the present study cannot be

assessed at this time because of the lack of experi

mental data.

Figure 8 shows the Nusselt number, Nu x /

.,.IRe;, variations for various wedge angles with

Pr= 1. The results show that the Nusselt number

increases linearly with the wedge angle, and slight

variation of heat transfer distribution with K is

observed. However, the surface heat transfer rate

is lower in the case of an anisotropic fluid when

compared with the Newtonian fluid while the

parameters of the problem are held constant.
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